Inverse Operations - Operations that undo one another. Addition is the inverse of subtraction; multiplication is the inverse of division; roots are the inverses of exponents.

Isolating a Variable

A.CED.4 Rearrange formulas to highlight a quantity of interest using the same reasoning as in solving equations. Examples: Rearrange Ohm's law V = IR to highlight resistance R; Rearrange area of a circle formula A πIr^2 to highlight the radius r. Understand solving equations as a process of reasoning and explain the reasoning

What am I learning today?

How to rewrite a formula to isolate a variable

How will I show that I learned it?

Use inverse operations to isolate a variable

Isolating a variable is solving the equation so that the variable is alone on one side of the equal sign and everything else is on the other side.

In order to isolate a variable, you must move everything that is on the same side of the equal sign to the opposite side by **inverse operations**.

$$x = \alpha - 5$$
 $x + 5 = \alpha - 5$

Ex.1
$$x + b = y - b$$
 Think: $x + 5 = 8$ $-5 - 5$ $X = 3$

Ex.2
$$2x - 4y = 7(x)$$
 Think: $2x - 40 = 7$ $+40 + 40$ $= 7$

Ex.3
$$y = mx + b$$

$$-b - 7b$$

$$y = mx + b$$

$$y - b - mx$$

$$y - b$$

$$x - y - b$$

Think:
$$15 = 3x + 8$$
 $\frac{7}{8} = \frac{3x}{3}$
 $\frac{7}{3} = \frac{3}{3}$

$$2A = h(b_1 + b_2) \text{ Think:} (7) \left(\frac{5(x+3)}{2}\right)^{2}$$

$$2A = h(b_1 + b_2) + h(b_2 + b_3) + h(b_3 + b_4) + h(b_4 + b_5)$$

$$2A = h(b_1 + b_2) + h(b_2 + b_3)$$

$$2A = h(b_1 + b_2) + h(b_2 + b_3)$$

$$-h(b_1 + b_2) + h(b_2 + b_3)$$

$$-h(b_2 + b_3) + h(b_3 + b_3)$$

$$-h(b_1 + b_2) + h(b_2 + b_3)$$

$$-h(b_2 + b_3) + h(b_3 + b_3)$$

$$-h(b_3 + b_3) + h(b_3 +$$

You Try

- 1. Solve mx = y for x.
- 2. Solve 2x 3y = 6 for y.
- 3. Solve A = 2π rh for r.
- 4. Solve V = $\pi r^2 h$ for r.