<u>Brainstorm</u>: If I said a function was continuous what do you think I mean? Can you sketch a function that you think is continuous? Can you sketch one that

A little more practice on...

Limits with piecewise functions:

$$f(x) = \begin{cases} x-2, & x \le 0 \\ x^2 + 1, & x > 0 \end{cases} \quad \begin{cases} \lim_{x \to 0} f(x) = \text{disc} \left[\lim_{x \to 0} f(x) = \text{disc} \left[\lim_{x \to 0} f(x) + \int_{x \to 0}^{2} f(x) dx \right] \right] \\ \text{X-3-} O + \int_{x \to 0}^{2} f(x) = \text{disc} \left[\lim_{x \to 0} f(x) = \text{disc} \left[\lim_{x \to 0} f(x) + \int_{x \to 0}^{2} f(x) dx \right] \right] \\ \text{X-3-} O + \int_{x \to 0}^{2} f(x) = \text{disc} \left[\lim_{x \to 0} f(x) = \text{disc} \left[\lim_{x \to 0} f(x) + \int_{x \to 0}^{2} f(x) dx \right] \right]$$

1.4 Continuity

auity:

Three priteria for Continuity:

- 1. 2.]
 - f(a) is defined
 - $\lim_{x \to a} f(x)$ exists
 - $\lim_{x \to a} f(x) = f(a)$

Remember these 3 things!

Example Determine which criteria are True.

- f(a) is defined
- f(a) is defined $\lim_{x \to a} f(x)$ exists

- $\lim_{x \to a} f(x) \text{ exists}$
- $\lim_{x \to a} f(x)$ exists

There are three *main* kinds of discontinuities:

3). infinite

Jump and Infinite discontinuities are non-removable.

Example State the type of discontinuity. If it's removable, find the value that will make the function continuous.

Is the function continuous? If not, state the x-value for which the function is not continuous. What kind of discontinuity is there? $f(x) = \frac{x^2 - 4}{x - 2} \qquad \text{den} = 0$ (x + 2)(x + 2)(x + 2)F(x) has a hale 0×2 and 1×3 State the intervals for which the function is continuous. (x + 2)(x + 2)(x + 2)

How can we define f(x) so that the function is continuous?

$$f(x) = \frac{x^{2}-4}{x-2}, x \neq 2$$

$$0 \text{ Solve for limit at hole.}$$

$$\lim_{X \to 2} \frac{X^{2}-4}{X-2} = \lim_{X \to 2} \frac{(x+2)(x+2)}{x+2}$$

$$\lim_{X \to 2} \frac{X+2}{X-2} = 2+2=4$$

$$f(x) = \begin{cases} \frac{x^{2}-4}{X-2}, & x \neq 2 \\ \frac{x+2}{X-2}, & x \neq 2 \end{cases}$$

$$\frac{x+2}{4}, & x = 2$$

Is the function continuous? If not, state the x-value for which the function is not continuous. What kind of discontinuity is there?

$$f(x) = \frac{1}{x+2} \quad \text{V.A.} \quad X = -2$$

$$\text{in finite discontinuty } \quad X = -2$$

State the interval for which the function is continuous.

What does a have to be in this function so that it is

Is the function coafficults? If not, state the x-value for which the function is not continuous. What kind of discontinuity is there?

Is the function continuous? If not, state the x-value for which the function is not continuous. What kind of discontinuity is there?

$$y = [|x|]$$

Greatest Integer Function
The greatest integer less than or equal to *x*.

To put in your calculator y1 = int (x)

* You can find "int" by pressing 2nd CATALOG (above the 0 key)

HW: TB pg. 84-85 pg. 53-54 packet